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Abstract 

Portugal is recurrently affected by large wildfire events that have serious impacts at the socio-economic and environmental 

levels and dramatic consequences associated with the loss of lives and the destruction of the landscape. Accordingly, seasonal 

forecasts are required to assist fire managers, thus contributing to alter the historically-based purely reactive response. In this 10 

context, we present and discuss a statistical model to estimate the probability that the total burned area during summer will 

exceed a given threshold. The statistical model uses meteorological information that rates the accumulation of thermal and 

vegetation stress. Outlooks for the 39-year study period (1980-2018) show that, when the statistical model is applied from May 

26 to June 30, out of the six severe years, only one year is not anticipated as potentially severe and, out of the six weak years, 

only one is not anticipated as potentially weak. The availability of outlooks of wildfire potential with an anticipation of up to 15 

one month before the starting of the fire season, such as the one proposed here, may serve to provide clear directions for the 

fire community when planning prevention and combating fire events. 

1 Introduction 

Portugal is regularly affected by very large and destructive wildfires that represent a serious threaten  to human lives and to the 

territory, and have very strong and adverse impacts at the social, economic, ecologic and environmental levels that include 20 

human casualties, the destruction of homes and other structures, damages to forests, agricultural fields,  shrublands and 

livestock, changes in the landscape and emission of greenhouse gases  (Costa et al., 2010; Pereira et al., 2011). According to 

the European Commission Technical Report about forest fires in Europe (San-Miguel-Ayanz et al., 2018), from 1980 to 2017, 

Portugal accounted for 26% of the total burned area in the five s outhern member states (Portugal, Spain, Italy, Greece and 

France). However, this figure raises up to 42% when restricting to the last decade, the extreme year of 2017 deserving a spec ial 25 

emphasis with Portugal accounting for 59% of the burned area in the five southern member states, despite representing 6% of 

the total area of the countries. 

As in Mediterranean Europe, fire activity in Portugal involves complex interactions among clima te, vegetation and humans 

(Lavorel et al., 2006; Costa et al., 2010). Persistent warm and dry conditions  followed by heat spells in summer provide the 
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optimal meteorological background to the onset and spreading of large fire events (Pereira et al., 2005; Trigo et al., 2006;  

DaCamara et al., 2014) that take place in a landscape of cumulated biomass and increased fuel connectivity as a result of 

agricultural abandonment and forest expansion (Pausas and Fernández-Muñoz, 2012; Fernandes et al., 2014; Viedma et al., 

2015; Oliveira et al., 2017). In addition, Portugal has the highest density of ignitions in Southern Europe, with the human 

presence and activity being the key drivers of ignitions, most of them associated to land management practices and inadequate  5 

use of fire (Catry et al., 2009). Finally, the impacts of climate change cannot be disregarded, since a future warmer climate 

will steer a larger number of severe wildfire episodes (Flannigan et al., 2013; Sousa et al., 2015). In this context, the 

catastrophic fires of June 2017 in Portugal (with 65 fatalities) associated to the stronger heatwave ever observed over Iberia in 

June, provide a stark reminder of the growing likelihood of these events under the current warming climate (Sánchez-Benítez 

et al. 2017). 10 

The magnitude of the problems related to fire activity in Portugal has motivated the scientific and technical communities to 

cooperate with forest managers, firefighters and the fire community with the aim of improving the understanding of the fire 

regime in Portugal and develop better tools that will help preventing and mitigating the impacts of severe fire events  (Collins  

et al., 2013; Oliveira et al., 2016). 

Outlooks of wildfire potential for different regions of the globe are usually based on statistical approaches (e.g. Gudmundsson 15 

et al., 2014; Turco et al., 2017) or, alternatively, using fire weather predictions a few months in advance based on dynamical 

seasonal forecasts by atmospheric circulation models  (Anderson et al., 2007; Turco et al., 2018). For instance, the European 

Forest Fire Information System (EFFIS), one of the components of the Emergency Management Services in the EU Copernicus 

program, is currently disseminating maps (as experimental products) of long-term seasonal forecasts of temperature and 

rainfall anomalies based on the European Centre for Medium-Range Weather Forecasts  (ECMWF) Seasonal Forecasting 20 

System (System 4). However, as pointed out by Bedia et al. (2018), although there is significant skill in predicting one month 

ahead above average summer fire weather in some parts of south-eastern Europe, skill is in general quite poor elsewhere. 

As an alternative, the aim of this paper is to describe and discuss a model that allows making outlooks of wildfire potential in 

Portugal during the fire season up to one month in advance based on a statistical approach that integrates information about 

meteorological fire danger before and during the fire season. The rationale is that persistent warm and dry conditions along 25 

the pre-fire season induce thermal and water stress on vegetation making the landscape more prone to the occurrence of very 

severe fire episodes and, at the same time, increase the likelihood of heat wave spells that steer the onset and propagation of 

large fires (Gudmundsson et al., 2014; Turco et al., 2017). The procedure involves three steps; first we set up a null model of 

burned area (BA) during the fire season (where no meteorological information is incorporated); then we set up a diagnostic 

model of BA that incorporates meteorological information during the pre-fire and the fire seasons; finally we set up a 30 

prognostic model of BA that only incorporates meteorological information before the fire season. We then show that both the 

diagnostic and the prognostic models are better performant than the null model and that the loss in performance of the 

prognostic model (when compared to the diagnostic one) is relatively small, namely in what respects to its capacity to anticipate 
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fire seasons characterized by high amounts of BA. Section 2 provides a description of data and methods, and results are 

presented in section 3. Finally, discussion of results and conclusions are drawn in Section 4. 

2 Data and methods 

The area of interest is defined as the territory of Portugal and the study covers the 39-year period from 1980 to 2018. Data of 

BA consist of yearly amounts of cumulated BA in July and August, hereby referred to as the fire season. BA data are derived 5 

from the official Portuguese Rural Fire Database provided by the National autho rity for forests (ICNF). The database contains 

more than half a million records of fire events, with information of total burned area, date and time of ignition and extinct ion, 

and spatial location of the starting point. Details about the database are prov ided in Pereira et al. (2011). Cumulated BA in the 

fire season accounts for more than 70% of the total burned area in Portugal (Pereira et al., 2013), and more than 80% of extreme 

fire days (defined as the top 5% in terms of radiative energy released by wildfires) occur in July and August (DaCamara and 10 

Trigo, 2018). 

Information about meteorological fire danger consists of daily values of the Daily Severity Index (DSR) covering the months 

of April to August. DSR is an extension of the Canadian Forest Fire Weather Index System (CFFWIS) and rates the difficulty  

of controlling fires (van Wagner, 1987). This index has been successfully used to model BA variability in Portugal at daily 

and monthly scales (Calado et al. 2008; Pereira et al., 2013). Suited for spatial and temporal averages, DSR results from a 15 

direct transformation of the Fire Weather Index (FWI), the last of the six components of CFFWIS. For each day, the six 

components are computed based on consecutive daily observations of meteorological parameters  of the previous days, namely 

temperature, relative humidity, wind speed, and 24-hour cumulated precipitation (Wang et al., 2015). In this study, 

meteorological parameters consist of gridded daily values at 12 UTC of 2 meter temperature, relative humidity, wind speed 

and 24 hours cumulated precipitation that were obtained from the ERA-Interim reanalysis dataset (Dee et al., 2011) issued by 20 

ECMWF. As described in Pinto et al. (2018), the original ERA-Interim data were re-projected onto the normalized  

geostationary projection (NGP) of Meteosat Second Generation (MSG) (EUMETSAT, 1999), with an average pixel size of 

about 4 km × 4 km over Portugal. Daily values of DSR for Portugal were then obtained by averaging over all grid points 

located within the study area. 

Following Nunes et al. (2014), the period from April to August is divided into two subperiods; 1) the pre-fire season that runs 25 

from April 1 (day 1) up to June 30 (day 91) and 2) the fire season that runs from July 1 (day 1) up to August 31 (day 62).  

For each year of the period 1980-2018, meteorological fire danger at day 𝑑 of the pre-fire season (pfs) of the considered year 

is rated by index 𝐷𝑝𝑓𝑠 (𝑑), defined as the cumulative value of daily DSR since April 1: 

𝐷𝑝𝑓𝑠 (𝑑) = ∑ 𝐷𝑆𝑅𝑖 ,    𝑑 = 1, ⋯ ,91𝑑
𝑖=1           (1) 

where 𝐷𝑆𝑅𝑖  is the value of DSR at day 𝑖. It is worth noting that, as 𝑑 runs along the pre-fire season of the year considered, 30 

progressively more information is integrated in 𝐷𝑝𝑓𝑠 (𝑑 ) about past daily meteorological fire danger. 
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In turn, meteorological fire danger of the fire season (fs) of each year of the period 1990-2018 is rated by index 𝐷𝑓𝑠 , defined 

as the square root of the mean squared anomalies performed over days characterized by a positive anomaly of DSR: 

𝐷𝑓𝑠 = √
∑ 𝐻[𝐴𝑗](𝐴𝑗)

262
𝑗 =1

∑ 𝐻[𝐴𝑗]62
𝑗 =1

           (2) 

where 𝐻[𝑥] is the Heaviside step function (𝐻[𝑥] = 1, 𝑥 > 0; 𝐻[𝑥] = 0, 𝑥 ≤ 0) and: 

𝐴𝑗 = 𝐷𝑆𝑅𝑗 − 𝐷𝑆𝑅𝑗
̅̅ ̅̅ ̅̅  ̅           (3) 5 

is the anomaly of DSR at day 𝑗 of the considered year, that is defined as the departure of DSR from the climatological mean  

𝐷𝑆𝑅𝑗
̅̅ ̅̅ ̅̅ ̅ for day 𝑗 (as obtained by averaging DSR for that day over the 39-year period 1980-2018). 

As discussed in Pereira et al. (2005), the interannual variability of BA in Portugal is modulated by two kinds of meteorological 

factors, namely the temperature and precipitation regimes during the pre-fire season and the occurrence of hot and dry spells 

during the fire season. The former meteorological factor is quantified by 𝐷𝑝𝑓𝑠 (𝑑), where, for a given day 𝑑 of the pre-fire 10 

season, large values indicate persistent warm and/or dry conditions up to day  𝑑, inducing thermal and water stress on vegetation 

and a shortage of water in the soil. The second meteorological factor is in turn quantified by 𝐷𝑓𝑠  that is very sensitive to the 

occurrence, during the considered fire season, of very large positive anomalies of DSR that are usually associated to heat waves  

(Gudmundsson et al., 2014; Turco et al., 2017). 

Obtained sets of indices , 𝐷𝑝𝑓𝑠 (𝑑) and 𝐷𝑓𝑠 , for the respective 39 pre-fire and fire seasons (1980-2018), are normalized by 15 

subtracting the respective sample mean and then dividing by the sample standard deviation. Obtained normalized indices will 

be hereby denoted as 𝜓(𝑑)  and 𝜒, respectively. 

The following types of models are considered in this study: 

1) A null model 𝑋~𝑁 (𝑋; 𝜇𝑋 ,𝜎𝑋), where 𝑋 is the considered variable and 𝜇𝑋 and 𝜎𝑋 are the mean and the standard deviation 

to be estimated, respectively; 20 

2) A nested model with one covariate 𝑋~𝑁(𝑋; 𝑝 × Α + 𝑞, 𝜎𝑋) where the mean of the normal distribution linearly depends 

on covariate Α, and 𝑝 and 𝑞  are parameters to be estimated; 

3) A nested model with two covariates 𝑋~𝑁(𝑋; 𝑎 × Α + 𝑏 × Β + 𝑐, 𝜎𝑋) where the mean of the normal distribution linearly  

depends on covariates Α and Β, with 𝑎, 𝑏 and 𝑐  being parameters to be estimated. 

Using the maximum likelihood method (Wilks, 2011), estimates of parameters 𝜇𝑋, 𝜎𝑋, 𝑝, 𝑞 , 𝑎, 𝑏 and 𝑐  are obtained as follows 25 

from sample 𝑋 𝑗 (𝑗 = 1, ⋯ , 𝑛) where 𝑛 is the size of the sample: 

�̂�𝑋 =
1

𝑛
Σ(𝑋𝑗 )             (4) 

𝜎𝑋
2 =

1

𝑛
Σ(𝑋𝑗 − �̂�𝑋)

2
            (5) 
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𝑝 =
𝑐𝑜𝑣(𝑥,A)

𝑣𝑎𝑟 (A)
             (6) 

𝑞 = 𝑋 − 𝑝A̅             (7) 

𝑎 =
𝑣𝑎𝑟(Β)   𝑐𝑜𝑣(𝑋,Α)−𝑐𝑜𝑣(Α,Β)  𝑐𝑜𝑣(𝑋,Β)

𝑣𝑎𝑟 (Α) 𝑣𝑎𝑟 (Β)−[𝑐𝑜𝑣(Α,Β)]2            (8) 

𝑏 =
𝑣𝑎𝑟(Α)  𝑐𝑜𝑣(𝑋,Β)−𝑐𝑜𝑣(Α,Β)  𝑐𝑜𝑣(𝑋,Α)

𝑣𝑎𝑟 (Α) 𝑣𝑎𝑟(Β)−[𝑐𝑜𝑣(Α,Β)]2            (9) 

𝑐 = 𝑋 − 𝑎Α̅ –bΒ̅ ,           (10) 5 

where ( )̅̅ ̅, 𝑣𝑎𝑟( ) and 𝑐𝑜𝑣( ) respectively denote the mean, the variance and the covariance operators. 

In the case of the null model, the Lilliefors test (Conover, 1980) is used to test the null hypothesis that the data come from a 

normal distribution. In the case of the nested models with covariates, the likelihood ratio test (Wilks, 1938) is used to decide 

on the null hypothesis that the null model is to be retained (against the alternate model under consideration). 

3 Results 10 

3.1 Null model 

The time series of cumulated BA in the fire season for the period 1980-2018 (Figure 1) presents very large interannual 

variability, the extremely high amounts of 2003 and 2005 contrasting with the extremely low values that were observed in 

1983, 1988, 1997 and 2008. It is worth referring that 2017, the year with the largest record in total BA (circa 450,000 ha), only 

ranks fourth when restricting to July and August because the largest fire events took place out of the fire season, in June and 15 

October (Sánchez-Benítez et al. 2018). 
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Figure 1: Time series of yearly cumulated BA (ha) in the fire season (July and August). 

The decimal logarithm of cumulated BA in the fire season follows a normal distribution model (Figure 2); the null hypothesis 

that the sample of log10 𝐵𝐴 comes from a normal distribution is not rejected at the 5% significance level by the Lilliefors test 

(p-value of 0.21). We have therefore the following null model: 5 

 

log10 𝐵𝐴 ~𝑁(log10 𝐵𝐴 ; 𝜇𝐵𝐴 ,  𝜎𝐵𝐴)          (11) 

 

with 𝜇𝐵𝐴 = 4.69 and 𝜎𝐵𝐴 = 0.46 as obtained by maximum likelihood method. 

 10 

It is worth noting that values of log10 𝐵𝐴 above percentile 80 of the model (highlighted in red in Fig. 2) and below percentile 

20 (highlighted in green) present larger departures from the fitted normal distribution than the remaining years ; these two 

groups are classified respectively as severe years (1991, 1995, 1998, 2003, 2005 and 2017) and as weak years (1983, 1988, 

1997, 2007, 2008 and 2014). The remaining years (marked in black in Fig.2) are classified as moderate. 

 15 
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Figure 2: Normal probability plot comparing the sample of 𝐥𝐨𝐠𝟏𝟎 𝑩𝑨 to the normal distribution. The groups of severe 

and weak years are marked in red and green, respectively and the years are identified by the two last digits. 

3.2 Model with two covariates 

Departures of severe and weak years from the fitted normal distribution suggest that other factors, namely meteorological ones, 5 

are playing a role in the interannual variability of BA (Pereira et al., 2005). Following the approach proposed by Nunes et al. 

(2014), for a given fixed day 𝑑, where d is chosen between May 26 (𝑑 = 56) and June 30 (𝑑 = 91), we tested an alternate 

model that incorporates information about meteorological fire danger in the pre-fire and the fire seasons. Accordingly, using 

Equations (1)-(3), we fitted to the sample of log10 𝐵𝐴 a normal distribution with the mean linearly depending on covariate 

𝜓(𝑑) for the considered fixed day 𝑑, and on covariate 𝜒, i.e., we tested the following model: 10 

 

log10 𝐵𝐴 ~𝑁(log10 𝐵𝐴 ;  𝑎(𝑑) × 𝜓(𝑑) + 𝑏(𝑑) × 𝜒 + 𝑐,  𝜎𝐵𝐴)       (12) 

 

It is worth noting that index 𝑑 is fixed in Equation (12) and is only used to identify the fixed day of the pre-fire season when 

covariate 𝜓(𝑑) is computed. Maximum likelihood estimates of coefficients 𝑎(𝑑) and 𝑏(𝑑) for the considered fixed day 𝑑 are 15 

then obtained according to Equations (8) and (9). It is also worth noting that parameter 𝑐  in Equation (12) does not depend on 

chosen day 𝑑 since, according to Equation (10), 𝑐 = 𝜇𝐵𝐴 for all days because 𝜓(𝑑) and 𝜒 have zero mean (since they are 

normalized). 

A model is accordingly fitted for each fixed day 𝑑, and, for all days between May 26 (𝑑 = 56) and June 30 (𝑑 = 91), it is 

found that the null hypothesis that the null model is to be retained (against the alternate nested model) is rejected  by the 20 
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likelihood ratio test at the 5% significance level, the p-values steeply decreasing from 9 × 10−3 for the model fitted on May 

26 (𝑑 = 56) to 6 × 10−4 for the model fitted on June 30 (𝑑 = 91). In turn, when 𝑑 progresses along the pre-fire season, 

obtained values of 𝑎(𝑑 ) increase whereas corresponding values of 𝑏(𝑑) slightly decrease (Figure 3). 

For each day 𝑑, performance of the fitted alternate model may be assessed by representing each year in space (𝜓,𝜒) framed  

by covariates 𝜓(𝑑) and 𝜒 over a background of probability of exceedance of a given fixed threshold, e.g. of the mean value 5 

𝜇𝐵𝐴 of the null model, i.e. 𝑃𝑒𝑥𝑐
(𝜓, 𝜒) = 𝑁[log10 𝐵𝐴 > 𝜇𝐵𝐴 ; 𝑎(𝑑) × 𝜓(𝑑) + 𝑏(𝑑) × 𝜒, 𝜎𝐵𝐴]. Results of models fitted on May 

26 (𝑑 = 56), June 15 (𝑑 = 76) and June 30 (𝑑 = 91) are shown in Figure 4. It is worth noting that severe (weak) years tend 

to spread over the upper right (lower left) quadrants of the space indicating that they are associated to high (low) values of 

both 𝜓(𝑑) and 𝜒. Severe (weak) years are also associated to high (low) values of 𝑃𝑒𝑥𝑐  and, excepting 2007 in May 26 and June 

15, the groups of severe and weak years are fully separated by contour 𝑃𝑒𝑥𝑐 = 0.5 (that, in fact, corresponds to the probability 10 

of exceedance of 𝜇𝐵𝐴 in the null model, where meteorological factors are not taken into account). Values of 𝑃𝑒𝑥𝑐  associated to 

severe years tend to gradually increase along the pre-fire season and, on June 30, five out the six severe years present values 

above 0.7 (a threshold that is barely surpassed by just two of the 27 moderate years). Finally, it is worth noting that the contour 

lines of 𝑃𝑒𝑥𝑐
(𝜓, 𝜒) become steeper along the pre-fire season, a result in agreement with the steep increase of parameter 𝑎 

(Figure 3). 15 

 

Figure 3: Temporal evolution of coefficients 𝒂 and 𝒃 of the normal model with two covariates. 
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Figure 4: Scatter plots of the 39-year sample in the space of covariates 𝝍(𝒅) vs. 𝝌 for May 26 (𝒅 = 𝟓𝟔), June 15 (𝒅 = 𝟕𝟔) and June 

30 (𝒅 = 𝟗𝟏). Groups of severe (weak) years are identified by the red (green) circles. The straight lines are contours of 𝑷𝒆𝒙𝒄(𝝍, 𝝌) . 

 

Results obtained suggest that the likelihood of a given year to belong to the severe or to the weak groups may be estimated 5 

based on the value of 𝑃𝑒𝑥𝑐 (𝑑) of each year as estimated by the fitted model on chosen day d (Figure 5). It is worth noting that, 

for a given year, values of 𝑃𝑒𝑥𝑐 (𝑑) change very slowly from day to day. This is to be expected since 1) the models are all fitted 

to the same sample of log10 𝐵𝐴, 2) covariate 𝜒 is the same in all models and 3) covariate 𝜓(𝑑) has high serial correlation  

since, according to Equation (1) index 𝐷𝑝𝑓𝑠 (𝑑) accumulates values of DSR since April 1 up to the considered day. Therefore, 

any decision taken for a given year, based on the respective estimate of 𝑃𝑒𝑥𝑐 (𝑑) from the model fitted on day 𝑑, is not expected 10 

to drastically change on the next few days unless there is an incoming sequence of very high (or very low) daily values of DSR 

that will considerably change 𝜓(𝑑) and therefore 𝑃𝑒𝑥𝑐 (𝑑 ). 

The following two types of decision are tested: 

 Type A: If 𝑃𝑒𝑥𝑐 > 0.5 at day 𝑑 then the year is not classified as weak (i.e., it is either moderate or severe); otherwise, 

if 𝑃𝑒𝑥𝑐 ≤ 0.5 then the year is not classified as severe (i.e., it is either moderate or weak). 15 

 Type B: If 𝑃𝑒𝑥𝑐 > 0.7 at day 𝑑 then the year is classified as severe. 
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Figure 5: Temporal evolution of 𝑷𝒆𝒙𝒄(𝝍, 𝝌) during the pre-fire season (May 26 to June 30). Severe (weak) years are identified by 

the red (green) curves. The black horizontal lines represent thresholds used in Type A (𝑷𝒆𝒙𝒄 = 𝟎. 𝟓) and Type B (𝑷𝒆𝒙𝒄 = 𝟎. 𝟕) 

decisions. Vertical dashed lines delimit the phase where Type A and Type B decisions were checked. 

 5 

Results obtained indicate that types A and B of decision should be applied to different periods of the pre-fire season, 

respectively from May 26 to June 30 (Table 1) and from June 18 to 30 (Table 2). Furthermore, for each type of decision, two 

phases are identified in the respective periods, the days of each phase being characterized by the same decisions taken for each 

year. In case of Type A decisions, there is just one wrong decision (2007 is incorrectly classified as not being a weak year) 

during phase A1 (May 26 to June 22) and all decisions are correct during phase A2 (June 23 to June 30). In case of Type B 10 

decisions, and for the entire period (June 18 to 30), all severe years but one (1998) are correctly classified as severe; on the 

other hand, three moderate years are incorrectly classified as severe during phase B1 (June 18 to 22) and this amount decreases 

to two during phase B2 (June 23 to 30). 

 

Table 1 Performance assessment of Type A decisions during the pre-fire season (May 26 to June 30) based on the model with two 15 

covariates.  

 Severe years incorrectly 
classified as non-severe 

Weak years incorrectly 
classified as non-weak  

Phase A1 
(May 26 – June 22) 

None 2007 

Phase A2 
(June 23 - 30) 

None None 
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Table 2 As in Table 1 but for performance assessment of Type B decisions for June 18 to 30. 

 Severe years correctly 
classified as severe 

Severe years not 
classified as severe 

Moderate years incorrectly 
classified as severe  

Phase B1 
(June 18 - 22) 

1991, 1995, 2003, 2005, 2017  1998 1987, 1992, 2010  

Phase B2 
(June 23 - 30) 

1991, 1995, 2003, 2005, 2017 1998 1992, 2010 

 

3.3 Model with one covariate 

Despite its usefulness in characterizing the role played by meteorological factors during the pre-fire and the fire seasons, the 5 

model discussed in the last subsection cannot be used to anticipate the likelihood of a given fire season given that one of t he 

two covariates (𝜒) is derived from daily information during that same fire season. However, results obtained in the previous 

subsection indicate that the role played by covariate 𝜓(𝑑) in each fitted model becomes more and more relevant when day 𝑑 

progresses along the pre-fire season as suggested by the steady increase of coefficient 𝑎(𝑑 ) that even becomes larger than 

𝑏(𝑑) after June 25 (Figure 3), as well as by the increase in slope of contour lines of 𝑃𝑒𝑥𝑐 (d) (Figure 4). 10 

Therefore, for each considered day 𝑑, we fitted to the sample of log10 𝐵𝐴 the following normal model, now with the mean  

linearly depending just on covariate 𝜓(𝑑 ): 

 

log10 𝐵𝐴 ~𝑁(log10 𝐵𝐴 ;  𝑝(𝑑) × 𝜓(𝑑) + 𝑞,  𝜎𝐵𝐴)        (13) 

 15 

Maximum likelihood estimates of model parameters 𝑝(𝑑) and 𝑞  are obtained using Equations (6) and (7) and it may be noted 

that again parameter 𝑞  is the same for all fitted model, with 𝑞 = 𝜇𝐵𝐴 because 𝜓(𝑑) has zero mean. As in the case of coefficient  

𝑎 in the model with two covariates , coefficient 𝑝(𝑑) increases as the considered day 𝑑 progresses along the pre-fire season 

(Figure 6). For each day 𝑑, the relative role played by covariates 𝜓(𝑑) and 𝜒 may be assessed by comparing the log-likelihood 

ratio statistics −2 ln(𝐿0 𝐿1
⁄ ) and −2 ln(𝐿1 𝐿2

⁄ ), where 𝐿0, 𝐿1 and 𝐿2 are the likelihood functions of the null model, the model 20 

with one covariate and the model with two covariates (Figure 7). These two ratios represent the increases in likelihood of the 

sample of BA when replacing the null model (with no covariates) by the model with covariate 𝜓 and then the latter model by 

the model with covariates 𝜓 and 𝜒. 
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Figure 6: As in Figure 3 but for coefficient 𝒑 of the normal model with one covariate. 

 

 

Figure 7: Temporal evolution of the log-likelihood ratio statistics −𝟐 𝐥𝐧(𝑳𝟎 𝑳𝟏⁄ ) between the null model and the model with one 5 
covariate and −𝟐 𝐥𝐧(𝑳𝟏 𝑳𝟐⁄ ) between the model with one covariate and the model with two covariates. The horizontal dashed line 

represents the critical value for the statistic at the 5% significance level. 

Values of −2 ln(𝐿0 𝐿1
⁄ ) increase as the considered day 𝑑 progresses along the pre-fire season, contrasting with the behaviour 

of −2 ln(𝐿1 𝐿2
⁄ ) where a decrease (albeit more moderate) is observed. The former ratio even becomes larger than the latter 
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from June 23 to 30; however, it may be noted that, for models fitted on days between May 26 and June 13, values of 

−2 ln(𝐿0 𝐿1
⁄ ) are smaller than the critical value at the 5% significance level, indicating that the null model is to be retained 

(against the alternate model with one covariate). Nevertheless, the model with one covariate is still tested along the entire  pre-

fire season (May 26 to June 30) because, as shown in Figure 4 (left and central panels), the severe (weak) groups tend to 

present for the most part high (low) values of covariate 𝜓. Reinforcing the relevance of this covariate when estimating the 5 

likelihood of a given year to belong to the severe class, we find that, when, for each considered fixed day 𝑑, we restrict to 

years with 𝜓(𝑑)  larger than the respective daily median, there is a positive correlation between 𝜓(𝑑) and 𝜒 that, except from 

June 5 to 12, is significant at the 5% level (Figure 8). 

 

Figure 8: Temporal evolution of the correlation between 𝝍(𝒅) and 𝝌 from May 26 to June 30 for all years (dotted curve) and 10 
restricting to years 𝝍(𝒅) larger than the respective median (solid curve). Black circles in the solid curve identify values of 

correlation that are significant at the 5% level. 

 

As with the model with two covariates, a given year is anticipated as belonging to the severe or the weak groups by making  

Type A and Type B decisions based on the value of 𝑃𝑒𝑥𝑐 (𝑑) of each year as estimated by the fitted model (with one covariate) 15 

on that fixed day d. It is worth noting the use of the wording “is anticipated as” (instead of “is classified as” employed in the 

previous section) that is meant to enhance the prognostic character of the model with covariate 𝜓. It is also worth noting that, 

since the model with one covariate has lower variability than the model with two covariates, the threshold of 0.7 (previously 

used in Type B decisions) is now lowered to 0.66 (Figure 9). 

 20 
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Figure 9: As in Figure 5 but when using the model with one covariate. 

 

Three phases (A1, A2 and A3) are used to assess Type A decisions  (Table 3). In all phases, only 1998 (out of the six severe 

years) is incorrectly anticipated as a non-severe year. In turn, the number of weak years incorrectly anticipated as non-weak 5 

decreases from three in phase A1 (May 26 to 30) to two in phase A2 (May 31 to June 5) and then to just one in phase A3 (June 

6 to 30). Assessment of Type B decisions (Table 4) is performed in two phases (B1 and B2). Regarding the severe years 

correctly classified as severe, it is worth pointing out that, apart from phase B1 beginning three days later (on June 21 instead 

of 18), there is no decrease in performance from the model with two covariates, 1998 being again the only missed severe year 

in phases B1 and B2. Finally, no virtual decrease is found in performance in the number of moderate years incorrectly 10 

anticipated as severe, that, as with the model with two covariates, decrease from three in phase B1 (June 21 to 26) to two in 

phase B2 (June 27 to 30). 

 

Table 3 As in Table 1 but for the model with one covariate. 

 Severe years incorrectly 
anticipated as non-severe 

Weak years incorrectly 
anticipated as non-weak  

Phase A1 
(May 26 – 30) 

1998 1983, 1997, 2014 

Phase A2 
(May 31 – June 5) 

1998 1997, 2014 

Phase A3 
(June 6 - 30) 

1998 2014 
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Table 4 As in Table 2 but for the model with one covariate. 

 Severe years correctly 
anticipated as severe 

Severe years not 
anticipated as severe 

Moderate years incorrectly 
anticipated as severe  

Phase B1 
(June 21 - 26) 

1991, 1995, 2003, 2005, 2017  1998 1992, 2006, 2015  

Phase B2 
(June 27 - 30) 

1991, 1995, 2003, 2005, 2017 1998 1992, 2015 

 

4 Discussion and conclusions 

The increasing dimension of the impacts of extremely large wildfires that have been affecting Portugal in the last decades ca lls 5 

for the improvement of diagnostic and prognos tic tools designed to assist forest and fire managers in taking better decisions 

on both prevention and combat. For this purpose, we set up a model that allows making outlooks , up to one month ahead, of 

wildfire potential in Portugal during the fire season (defined as July and August). We started by setting up a null model of BA 

consisting of a simple normal distribution fitted to the sample (for the period 1980-2018) of the decimal logarithm of the yearly 

cumulated values of BA during the fire season (log10 𝐵𝐴). The rationale is in line with previous studies (Pereira et al., 2013;  10 

Nunes et al., 2014) that used the log-normality of monthly cumulated values of BA to model the inter-annual variability of 

BA. 

The null model was then used to define two groups of years, the severe and weak groups, formed by the years with values 

respectively above percentile 80 and below percentile 20 of the fitted normal distribution log10 𝐵𝐴 ~𝑁(log10 𝐵𝐴 ; 𝜇𝐵𝐴 ,  𝜎𝐵𝐴) 

(Figure 2). The severe and weak groups presented noticeable deviations from the fitted normal model, an indication that 15 

meteorological factors are likely to be contributing to exacerbate or mitigate the occurrence of large fire events. Indeed, as 

shown by Pereira et al. (2005), meteorological conditions preceding the fire season and/or concurring with the fire events in 

Portugal explain two thirds of the observed interannual variability of BA during July and August. For instance, long periods 

of warm and dry weather during the pre-fire season induce high levels of vegetation stress that increase the probability of 

occurrence of large fire events  as shown for Portugal (Trigo et al., 2006) and even the Mediterranean basin (Gudmundsson et 20 

al., 2014; Turco et al., 2017). On the other hand, the occurrence during the fire season of extremely hot and dry spells associated 

to strong winds is the key triggering mechanism for the onset and spreading of very large fire events (Amraoui et al, 2013). 

The role played by meteorological factors was then included in the model of BA by fitting to the sample of log10 𝐵𝐴 an 

alternate normal model where the mean linearly depends on two covariates, 𝜓 and 𝜒, designed to rate the role played by 

meteorological factors respectively during the pre-fire (May 26 to June 30) and the fire seasons (Nunes et al., 2014). Covariate 25 

𝜓 (defined at a given fixed day of the pre-fire season) responds to the accumulation of thermal and water stress up to the 

chosen day, whereas covariate 𝜒 is sensitive to the occurrence of hot and dry spells taking place in the fire season. 

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-60
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 25 March 2019
c© Author(s) 2019. CC BY 4.0 License.



16 

 

The relative magnitudes of the daily coefficients of the two covariates for each chosen day (Equation 12) change along the 

pre-fire season, with coefficient 𝑏 of χ slightly decreasing and coefficient 𝑎 of 𝜓 increasing and even surpassing 𝑏 after June 

24 (Figure 3). This result reflects the key role played by the accumulation of thermal and water stress of vegetation along the 

pre-fire season on the occurrence of large fire events during the fire season, a result in line with previous studies focusing on 

Portugal (Pereira et al., 2005; Trigo et al., 2006; Calado et al., 2008). Results from the model with two covariates (Figure 4) 5 

show that, during phase A2 of the pre-fire season (June 23 to 30), the two groups of severe and weak years are fully separated 

by the line 𝑃𝑒𝑥𝑐 = 0.5, where 𝑃𝑒𝑥𝑐 (𝜓, 𝜒) is the probability of exceedance of 𝜇𝐵𝐴 and that, during phase A1 (May 26 to June 

22), the same threshold in probability separates all severe and weak years but 2007 (a weak year). These results stem from the 

fact that severe (weak) years are characterized for their most part by high (low) values of both covariates , therefore occupying 

the upper right (lower left) quadrants in the space (𝜓, 𝜒) of covariates. 10 

Performance of the model with two covariates was evaluated by testing two types of decisions  based on the temporal evolution 

of 𝑃𝑒𝑥𝑐 ; for Type A, the decision is on whether a given year is classified as not being severe or as not being weak, whereas for 

Type B it is on whether the year is classified as severe. Type A decisions are made during the entire pre-fire season (May 26 

to June 30) and Type B decisions restrict to the end of the pre-fire season (June 18 to 30) when the role played by the cumulation 

of vegetation stress becomes as relevant as the one by the occurrence of extreme weather events  during the fire season. 15 

As a result of the separability all Type A decisions are correct during phase A2 and only 2007 is classified as non-weak during 

phase A1. Regarding Type B decisions, out of the six severe years, only 1998 is not classified as severe and this incorrect 

anticipation results from the fact that 1998 is the only case where a low value of 𝜓 along the pre-fire season is not associated 

to a low or moderate value of 𝜒. 

The model with two covariates has the disadvantage that it cannot be used as a tool to make outlooks about the likelihood of a 20 

given year to be severe or weak because covariate 𝜒 is derived from daily information respecting to the fire season itself. 

However, the fact that severe and weak years tend to concentrate in opposite regions of the (𝜓, 𝜒) space suggests that large 

values of 𝜒 are more likely to occur after large values of 𝜓, a result that is in line with previous findings that soil moisture 

deficit and drought (associated to increasingly large values of 𝜓) have an impact on summer hot extremes in Mediterranean 

regions (Vautard et al., 2007; Hirschi et al., 2011), a feature that fostered the development of both statistical and dynamical 25 

seasonal fire forecasting approaches in the Mediterranean region (Gudmundsson et al., 2014; Turco et al., 2017; Turco et al., 

2018). This relationship between 𝜓 and 𝜒 for larger values of 𝜓 further translates into the positive correlation between the two 

variables for 𝜓 larger than the median during the pre-fire season (Figure 8). 

A model with predicting capacity was therefore tested by fitting to the sample of log10 𝐵𝐴 an alternate normal model where 

the mean linearly depends only on covariate 𝜓 as evaluated for a given fixed day. Performance of the model was again assessed 30 

by testing Type A and Type B decisions. In case of Type A decisions, only 1998 (out of the six severe years) is incorrectly 

anticipated as non-severe. For Type B decisions, results are virtually the same as with the model with two covariates, reflecting  

the prominent role of cumulated vegetation stress at the end of the pre-fire season in favouring the ocurrence of severe years. 
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However, a test similar to Type B, but applied to weak years , has poor performance because the quadrant of low values of both 

𝜓 and 𝜒 in the space of covariates is occupied by weak years as well as by some of the moderate ones (Figure 4). This may be 

viewed as an indication that low values of 𝜓 along the pre-fire season have a moderate impact on the likelihood of a following  

fire season with a low value of 𝜒 and therefore in the likelihood of having a weak year. 

Finally it is worth noting that we have not incorporated in the prognostic model (with one covariate) any information derived 5 

from the fact that covariates 𝜓 and 𝜒 are positively correlated (when 𝜓 is larger than the median). This would imply setting up 

a model of the distribution of 𝜒  using information about meteorological conditions along the pre-fire season and then 

incorporting this information in the prognostic model. This is however beyound the scope of this paper.   

A beta version of the proposed model has been experimentally running since May 2017 and the correctness of the outlooks 

(made in real time) about 2017 being a severe year (based on a Type B decision) and about 2018 not being severe (based on a 10 

Type A decision) give confidence about the potential of the model to be operationally used to anticipate the occurrence of 

severe years. 

Daily outlooks are currently available at CeaseFire (http://idlcc.fc.ul.pt/CeaseFire/index.php), a website designed to integrate 

and disseminate relevant meteorological information to the user fire community by means of a simple, fast and user-friendly  

interface (Evans, 2018). Developed by Instituto Dom Luiz (IDL) at the Faculty of Sciences of the University of Lisbon 15 

(Portugal), the platform relies on data provided in near real-time by LSA SAF, the EUMETSAT Satellite Application Facility  

for Land Surface Analysis (Trigo et al., 2011). Currently there are about 900 registered users in the CeaseFire platform, mos t 

of them from national authorities and services, as  well as from municipalities and private companies , namely from the paper 

and pulp industry. 

Acknowledgements 20 

Research was developed within the framework of the EUMETSAT Satellite Application Facility for Land Surface Analysis 

(LSA SAF) and of FCT project “Forecasting fire probability and characteristics for a habitable pyroenvironment (FireCast)” 

under grant PCIF/GRF/0204/2017. Part of this work was developed under a contract with The Navigator Company. 

References 

Amraoui, M., Liberato, M. L. R., Calado, T. J., DaCamara, C. C., Coelho, L. P., Trigo, R. M. and Gouveia, C. M.: Fire 25 

activity over Mediterranean Europe based on information from Meteosat -8, Forest Ecol. Manag., 294, 62–75, 

https://doi.org/10.1016/J.FORECO.2012.08.032, 2013. 

Anderson, K. R., Englefield, P. and Carr, R. J.: Predicting fire weather severity using seasonal forecasts, in: Proceedings of 

the Seventh Symposium on Fire and Forest Meteorology, Bar Harbour, Maine, USA, 23-26 October 2007, 10.6.1-10.6.5, 

2007. 30 

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-60
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 25 March 2019
c© Author(s) 2019. CC BY 4.0 License.



18 

 

Bedia, J., Golding N., Casanueva, A., Iturbide, M., Buontempo, C. and Gutiérrez, J.M.: Seasona l predictions of Fire Weather 

Index: Paving the way for their operational applicability in Mediterranean Europe, Climate Services, 9, 101-110, 

https://doi.org/10.1016/j.cliser.2017.04.001, 2018. 

Calado, T.J., DaCamara, C.C. and Gouveia, C.: Mapping the daily risk of fire in Continental Portugal. in: The EUMETSAT 

Meteorological Satellite Data User’s Conference, Darmstadt, Germany, 8-12 September 2008, available from 5 

https://www.researchgate.net/publication/228448684\, 2008. 

Catry, F.X., Rego, F. C., Bação, F. and Moreira, F.: Modeling and mapping wildfire ignition risk in Portugal, International 

Journal of Wildland Fire 2009, 18(8), 921–931, https://doi.org/10.1071/WF07123, 2009. 

Conover, W. J: Practical Nonparametric Statistics , NJ: John Wiley & Sons, Inc., Hoboken, 1980. 

Collins, R. D., de Neufville, R., Claro, J., Oliveira, T. and Pacheco, A. P.: Forest fire management to avoid unintended 10 

consequences: A case study of Portugal using system dynamics, J. Environ Manage., 130, 1–9, 

https://doi.org/10.1016/J.JENVMAN.2013.08.033, 2013. 

Costa L., Thonicke K., Poulter B., Badek F.W.: Sensitivity of Portuguese forest fires to climatic, human, and landscape 

variables: subnational differences between fire drivers in extreme fire years and decadal averages. Reg . Environ. Change 

11(3), 543–551, https://doi.org/10.1007/s10113-010-0169-6, 2011. 15 

DaCamara, C. C., Calado, T. J., Ermida, S. L., Trigo, I. F., Amraoui, M. and Turkman, K. F.: Calibration of the Fire Weather 

Index over Mediterranean Europe based on fire activity retrieved from MSG satellite imagery, Int. J. Wildland Fire, 23(7), 

945-958, https://doi.org/10.1071/WF13157, 2014. 

DaCamara, C. C. and Trigo, R. M.:  Circulation weather types and their influence on the fire regime in Portugal, in : 

Advances in Forest Fire Research 2018 (Ed Domingos Xavier Viegas), edited by: Imprensa da Universidade de Coimbra, 20 

ISBN 978-989-26-16-506, 372-380, https://doi.org/10.14195/978-989-26-16-506_40, 2018. 

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, 

G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delson, C., Dragani, R., Fuentes, 

M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kallberg, P., Köhler, M., Matricardi, 

M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-25 

N., and Vitart, F.: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. Roy. 

Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. 

EUMETSAT: LRIT/HRIT Global Specification, EUMETSAT, Coordination group for meteorological satellites, CGMS03, 

Darmstadt, Germany, 1999.  

Evans, R.: Forecasting fires – from Monchique to Mozambique and beyond, Eumetsat Science Blog : 30 

https://scienceblog.eumetsat.int/2018/08/forecasting-fires-from-monchique-to-mozambique-and-beyond/, last access: 15 

March 2019. 

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-60
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 25 March 2019
c© Author(s) 2019. CC BY 4.0 License.



19 

 

Fernandes, P. M., Loureiro, C., Guiomar, N., Pezzatti, G. B., Manso, F. T. and Lopes, L.: The dynamics and drivers of fuel 

and fire in the Portuguese public forest, J. Environ. Manage., 146, 373–382, 

https://doi.org/10.1016/J.JENVMAN.2014.07.049, 2014. 

Flannigan, M., Cantin, A. S., de Groot, W. J., Wotton, M., Newbery, A. and Gowman, L. M.: Global wildland fire season 

severity in the 21st century, Forest Ecol. Manag., 294, 54–61, https://doi.org/10.1016/j.foreco.2012.10.022, 2013. 5 

Gudmundsson L., Rego F. C., Rocha M. and Seneviratne S. I.: Predicting above normal wildfire activity in southern Europe 

as a function of meteorological drought, Environ. Res. Lett., 9, 8, https://doi.org/10.1088/1748-9326/9/8/084, 2014. 

Hirschi M., Seneviratne S. I., Alexandrov, V., Boberg, F., Boroneant C., Christensen, O., Formayer, H., Orlowsky, B. and 

Stepanek, P.: Observational evidence for soil-moisture impact on hot extremes in southeastern Europe, Nat. Geosci., 4, 17-

21, https://doi.org/10.1038/ngeo1032, 2011. 10 

Lavorel, S., Flannigan, M. D., Lambin, E. F. and Scholes, M. C.: Vulnerability of land systems to fire : Interactions among 

humans , climate , the atmosphere , and ecosystems, Mitig. Adapt. Strat. Gl., 12(1), 33–53, https://doi.org/10.1007/s11027-

006-9046-5, 2006. 

Nunes, S. A., DaCamara, C. C., Turkman, K. F., Ermida, S. L. and Calado, T. J.: Anticipating the severity of the fire season 

in Northern Portugal using statistical models based on meteorological indices of fire danger, in: Advances in Forest Fire 15 

Research 2018 (Ed Domingos Xavier Viegas), edited by: Imprensa da Universidade de Coimbra, ISBN 978-989-26-0884-6, 

1634-1645, http://dx.doi.org/10.14195/978-989-26-0884-6_180, 2014. 

Oliveira, T. M., Barros, A. M. G., Ager, A. A. and Fernandes, P. M.: Assessing the effect of a fuel break network to reduce 

burnt area and wildfire risk transmission, Int. J. Wildland Fire, 25(6), 619, https://doi.org/10.1071/WF15146, 2016. 

Oliveira, T. M., Guiomar, N., Baptista, F. O., Pereira, J. M. C. and Claro, J.: Is Portugal’s forest transition going up in 20 

smoke?, Land Use Policy, 66, 214–226, https://doi.org/10.1016/J.LANDUSEPOL.2017.04.046, 2017. 

Pausas, J.G. and Fernández-Muñoz, S.: Fire regime changes in the Western Mediterranean Basin: from fuel-limited to 

drought-driven fire regime. Climate Change 110(1-2), 215–226, https://doi.org/10.1007/s10584-011-0060-6, 2012. 

Pereira, M., Calado, T., DaCamara, C. and Calheiros, T.: Effects of regional climate change on rural fires in Portugal, Clim. 

Res., 57(3), 187–200, https://doi.org/10.3354/cr01176, 2013. 25 

Pereira, M. G., Malamud, B. D., Trigo, R. M. and Alves, P. I.: The history and characteristics of the 1980-2005 Portuguese 

rural fire database, Nat. Hazard Earth Sys., 11(12), 3343–3358, https://doi.org/10.5194/nhess-11-3343-2011, 2011. 

Pereira, M. G., Trigo, R. M., DaCamara, C. C., Pereira, J. M. C. and Leite, S. M.: Synoptic patterns associated with large 

summer forest fires in Portugal, Agr. Forest Meteorol., 129(1–2), 11–25, 

https://doi.org/10.1016/J.AGRFORMET.2004.12.007, 2005. 30 

Pinto, M. M., DaCamara, C. C., Trigo, I. F., Trigo, R. M. and Turkman, K. F.: Fire danger rating over Mediterranean Europe 

based on fire radiative power derived from Meteosat,  Nat. Hazard Earth Sys., 18(2), 515–529, https://doi.org/10.5194/nhess-

18-515-2018, 2018. 

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-60
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 25 March 2019
c© Author(s) 2019. CC BY 4.0 License.



20 

 

San-Miguel-Ayanz, J., Durrant, T., Boca, R., Libertà, G., Branco, A., Rigo, D., Ferrari, D., Maianti, P., Vivancos, T. A., 

Costa, H., Lana, F., Löffler, P., Nuijten, D., Ahlgren, A. C. and Leray, T.: Forest Fires in Europe , Middle East and North 

Africa 2017, EUR 29318., JRC Science Hub., https://doi.org/10.2760/27815, 2018. 

Sánchez-Benítez A., García-Herrera R., Barriopedro D., Sousa P.M., Trigo R.M.: June 2017: The Earliest European Summer 

Mega‐ heatwave of Reanalysis Period, Geophys. Res. Lett., 45(4), 1955-1962, https://doi.org/10.1002/2018GL077253, 5 

2018. 

Sousa, P. M., Trigo, R. M., Pereira, M. G., Bedia, J. and Gutiérrez, J. M.: Different approaches to model future burnt area in 

the Iberian Peninsula, Agr. Forest Meteorol., 202, 11–25, https://doi.org/10.1016/J.AGRFORMET.2014.11.018, 2015. 

Trigo, I. F., DaCamara, C. C. , Viterbo, P., Roujean, J. -L. , Olesen, F. , Barroso, C ., Camacho-de Coca, F. , Freitas, S. C. , 

García-Haro, J. , Geiger, B. , Gellens-Meulenberghs, F. , Meliá, J. , Pessanha, L. and Siljamo, N.: The Satellite Application 10 

Facility for Land Surface Analysis, Int. J. Remote Sens., 32, 2725-2744., https://doi.org/10.1080/01431161003743199, 2011. 

Trigo, R. M., Pereira, J. M. C., Pereira, M. G., Mota, B., Calado, T. J., Dacamara, C. C. and Santo, F. E.: Atmospheric 

conditions associated with the exceptional fire season of 2003 in Portugal, Int. J. Climatol., 26(13), 1741–1757, 

https://doi.org/10.1002/joc.1333, 2006. 

Turco M., Jerez S., Doblas-Reyes F. J., AghaKouchak A., Llasat M. C. and Provenzale A.: Skilful forecasting of global fire 15 

activity using seasonal climate predictions, Nat. Commun., 9, 2718, https://doi.org/10.1038/s41467-018-05250-0, 2018 

Turco M., von Hardenberg J., AghaKouchak A., Llasat M. C., Provenzale A. and Trigo R. M.: On the key role of droughts in 

the dynamics of summer fires in Mediterranean Europe, Sci Rep-UK, 81, 7, https://doi.org/10.1038/s41598-017-00116-9, 

2017. 

Van Wagner, C. E.: Development and structure of the Canadian Forest Fire Weather Index System, Can. Forestry Serv., 20 

Technical Report 35, Ottawa, Ontario, 48 pp., 1987.  

Vautard, R.,Yiou, P., D’Andrea, F., de Noblet, N., Viovy, N.,  Cassou, C., Polcher, J., Ciais, P., Kageyama, M. Fan, Y.: 

Summertime European heat and drought waves induced by wintertime Mediterranean rainfall deficit, Geophys . Res. Lett., 

34(7), https://doi.org/10.1029/2006GL028001, 2007 

Viedma, O., Quesada, J., Torres, I., Santis, A.D., and Moreno, J.M.: Fire severity in a large fire in a Pinus pinaster forest  is 25 

highly predictable from burning conditions, stand structure, and topography, Ecosystems, 18(2),  237-250, 

https://doi.org/10.1007/s10021-014-9824-y, 2014. 

Wang, Y., Anderson, K. R., and Suddaby, R. M.: Updated source code for calculating fire danger in dices in the Canadian 

Forest Fire Weather Index System, Information Report NOR-X-424, Canadian Forest Service, Northern Forestry Centre, 

Edmonton, Alberta, Canada, 36 pp., 2015.  30 

Wilks, S. S.: The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses, in: The Annals of 

Mathematical Statistics, 9(1), 60–62, https://doi.org/10.1214/aoms/1177732360, 1938. 

Wilks, D. S.: Parametric Probability Distributions, in International Geophysics, 100, 71–131, https://doi.org/10.1016/B978-

0-12-385022-5.00004-X, 2011. 

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-60
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 25 March 2019
c© Author(s) 2019. CC BY 4.0 License.


